Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Commun Biol ; 7(1): 492, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654054

RESUMO

A correlation exists between obstructive sleep apnoea (OSA) and the severity of metabolic dysfunction-associated steatotic liver disease (MASLD), OSA can induce more severe MASLD. However, the underlying regulatory mechanism between the two is unclear. To this end, this study explored the role and possible molecular mechanisms of adipocyte-derived exosomes under OSA in aggravating MASLD. Through sequencing technology, miR-455-3p was identified as a co-differentially expressed miRNA between the MASLD + OSA and Control groups and between the MASLD + OSA and MASLD groups. Upregulation of TCONS-00039830 and Smad2 and downregulation of miR-455-3p in the MASLD and MASLD + OSA groups were validated in vivo and in vitro. TCONS-00039830, as a differentially expressed LncRNA in exosomes found in the sequencing results, transfection notably downregulated miR-455-3p and upregulated Smad2 in hepatocytes. TCONS_00039830 overexpression increased fat, triglyceride and cholesterol levels, while miR-455-3p overexpression decreased these levels. Furthermore, exosome administration promoted the accumulation of fat, triglyceride and cholesterol, upregulated TCONS_00039830 and Smad2, and downregulated miR-455-3p. Overexpression of miR-455-3p reversed the increased fat accumulation and upregulated TCONS_00039830 and Smad2. In conclusion, OSA-derived exosomes promoted hepatocyte steatosis by regulating TCONS_00039830/miR-455-3p/Smad2 axis, thereby aggravating liver damage in MASLD.


Assuntos
Exossomos , MicroRNAs , Apneia Obstrutiva do Sono , Proteína Smad2 , Animais , Exossomos/metabolismo , Exossomos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Smad2/metabolismo , Proteína Smad2/genética , Apneia Obstrutiva do Sono/metabolismo , Apneia Obstrutiva do Sono/genética , Apneia Obstrutiva do Sono/complicações , Masculino , Ratos , Adipócitos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Ratos Sprague-Dawley , Humanos , Hepatócitos/metabolismo , Modelos Animais de Doenças
2.
Front Immunol ; 15: 1359204, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504988

RESUMO

Background: Despite advancements, breast cancer outcomes remain stagnant, highlighting the need for precise biomarkers in precision medicine. Traditional TNM staging is insufficient for identifying patients who will respond well to treatment. Methods: Our study involved over 6,900 breast cancer patients from 14 datasets, including in-house clinical data and single-cell data from 8 patients (37,451 cells). We integrated 10 machine learning algorithms in 55 combinations and analyzed 100 existing breast cancer signatures. IHC assays were conducted for validation, and potential immunotherapies and chemotherapies were explored. Results: We pinpointed six stable Panoptosis-related genes from multi-center cohorts, leading to a robust Panoptosis-model. This model outperformed existing clinical and molecular features in predicting recurrence and mortality risks, with high-risk patients showing worse outcomes. IHC validation from 30 patients confirmed our findings, indicating the model's broader applicability. Additionally, the model suggested that low-risk patients benefit more from immunotherapy, while high-risk patients are sensitive to specific chemotherapies like BI-2536 and ispinesib. Conclusion: The Panoptosis-model represents a major advancement in breast cancer prognosis and treatment personalization, offering significant insights for effectively managing a wide range of breast cancer patients.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/terapia , Prognóstico , Mama , Imunoterapia , Medicina de Precisão
3.
Phytomedicine ; 128: 155396, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38547617

RESUMO

BACKGROUND: Abnormalities in glucose metabolism may be the underlying cause of ß-cell dysfunction and identity impairment resulting from high glucose exposure. In China, Coptis deltoidea C. Y. Cheng et Hsiao (YL) has demonstrated remarkable hypoglycemic effects. HYPOTHESIS/PURPOSE: To investigate the hypoglycemic effect of YL and determine the mechanism of YL in treating diabetes. METHODS: A type 2 diabetes mouse model was used to investigate the pharmacodynamics of YL. YL was administrated once daily for 8 weeks. The hypoglycemic effect of YL was assessed by fasting blood glucose, an oral glucose tolerance test, insulin levels, and other indexes. The underlying mechanism of YL was examined by targeting glucose metabolomics, western blotting, and qRT-PCR. Subsequently, the binding capacity between predicted AMP-activated protein kinase (AMPK) and important components of YL (Cop, Ber, and Epi) were validated by molecular docking and surface plasmon resonance. Then, in AMPK knockdown MIN6 cells, the mechanisms of Cop, Ber, and Epi were inversely confirmed through evaluations encompassing glucose-stimulated insulin secretion, markers indicative of ß-cell identity, and the examination of glycolytic genes and products. RESULTS: YL (0.9 g/kg) treatment exerted notable hypoglycemic effects and protected the structural integrity and identity of pancreatic ß-cells. Metabolomic analysis revealed that YL inhibited the hyperactivated glycolysis pathway in diabetic mice, thereby regulating the products of the tricarboxylic acid cycle. KEGG enrichment revealed the intimate relationship of this process with the AMPK signaling pathway. Cop, Ber, and Epi in YL displayed high binding affinities for AMPK protein. These compounds played a pivotal role in preserving the identity of pancreatic ß-cells and amplifying insulin secretion. The mechanism underlying this process involved inhibition of glucose uptake, lowering intracellular lactate levels, and elevating acetyl coenzyme A and ATP levels through AMPK signaling. The use of a glycolytic inhibitor corroborated that attenuation of glycolysis restored ß-cell identity and function. CONCLUSION: YL demonstrates significant hypoglycemic efficacy. We elucidated the potential mechanisms underlying the protective effects of YL and its active constituents on ß-cell function and identity by observing glucose metabolism processes in pancreatic tissue and cells. In this intricate process, AMPK plays a pivotal regulatory role.

4.
J Colloid Interface Sci ; 665: 399-412, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38537588

RESUMO

Photocatalytic selective oxidation plays an important role in developing green chemistry. However, it is challenging to design an efficient photocatalyst for controlling the selectivity of photocatalytic oxidation reaction and exploring its detailed mechanism. Here, we synthesized three conjugated microporous polymers (CMPs) with D-A structures, named M-SATE-CMPs (MZn, Cu and Co), with different d-band centers based on different metal centers, resulting in the discrepancy in adsorption and activation capacities for the reactants, which produces the selectivity of ß-keto esters being catalyzed into α-hydroperoxide ß-keto esters (ROOH) or to α-hydroxyl ß-keto esters (ROH). Density functional theory (DFT) calculations also demonstrate that the adsorption and activation capacities of the metal active centers in M-SATE-CMPs (MZn, Cu and Co) for ROOH are the key factors to influence the photocatalytic selective oxidation of ß-keto ester. This study provides a promising strategy for designing a metallaphotoredox catalyst whose photocatalytic selectivity depends on the d-band center of metal site in the catalyst.

5.
Phytomedicine ; 126: 155297, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342019

RESUMO

BACKGROUND: Research on the imbalance of proopiomelanocortin (POMC)/agouti-related protein (AgRP) neurons in the hypothalamus holds potential insights into the pathophysiology of diabetes. Jinkui Shenqi pills (JSP), a prevalent traditional Chinese medicine, regulate hypothalamic function and treat diabetes. PURPOSE: To investigate the hypoglycemic effect of JSP and explore the probable mechanism in treating diabetes. METHODS: A type 2 diabetes mouse model was used to investigate the pharmacodynamics of JSP. The glucose-lowering efficacy of JSP was assessed through various metrics including body weight, food consumption, fasting blood glucose (FBG), serum insulin levels, and an oral glucose tolerance test (OGTT). To elucidate the modulatory effects of JSP on hypothalamic mechanisms, we quantified the expression and activity of POMC and AgRP and assessed the insulin-mediated phosphoinositide 3-kinase (PI3K)/protein kinase A (AKT)/forkhead box O1 (FOXO1) pathway in diabetic mice via western blotting and immunohistochemistry. Additionally, primary hypothalamic neurons were exposed to high glucose and palmitic acid levels to induce insulin resistance, and the influence of JSP on POMC/AgRP protein expression and activation was evaluated by PI3K protein inhibition using western blotting and immunofluorescence. RESULTS: Medium- and high-dose JSP treatment effectively inhibited appetite, resulting in a steady declining trend in body weight, FBG, and OGTT results in diabetic mice (p < 0.05). These JSP groups also had significantly increased insulin levels (p < 0.05). Importantly, the medium-dose group exhibited notable protection of hypothalamic neuronal and synaptic structures, leading to augmentation of dendritic length and branching (p < 0.05). Furthermore, low-, medium-, and high-dose JSP groups exhibited increased phosphorylated (p) INSR, PI3K, pPI3K, AKT, and pAKT expression, as well as decreased FOXO1 and increased pFOXO1 expression, indicating improved hypothalamic insulin resistance in diabetic mice (p < 0.05). Treatment with 10% JSP-enriched serum produced a marked elevation of both expression and activation of POMC (p < 0.05), with a concurrent reduction in AgRP expression and activation within primary hypothalamic neurons (p < 0.05). Intriguingly, these effects could be attributed to the regulatory dynamics of PI3K activity. CONCLUSION: Our findings suggest that JSP can ameliorate diabetes by regulating POMC/AgRP expression and activity. The insulin-mediated PI3K/AKT/FOXO1 pathway plays an important regulatory role in this intricate process.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Resistência à Insulina , Camundongos , Animais , Proteína Relacionada com Agouti/metabolismo , Proteína Relacionada com Agouti/farmacologia , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Peso Corporal
6.
J Mol Model ; 30(1): 25, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38183499

RESUMO

CONTEXT: The mesophase pitch prepared by acid catalytic method typically had the advantages of low softening point and high solubility. To fully understand the mechanism of acid-catalyzed reactions and gain a deeper understanding of the microstructure of mesophase pitch, this article studied the mechanism of hydrofluoride/boron trifluoride (HF/BF3)-catalyzed anthracene using molecular simulation methods. The results showed that there might be two types of carbocations present in the system: classical and non-classical carbocations, and five reactions might occur, protonation reaction, chain elongation reaction, intramolecular cyclization reaction, deprotonation reaction, and dehydrogenation reaction. Classical carbocations acted as reactive intermediates in the chain elongation reaction and intramolecular cyclization reaction. When anthracene occurred chain elongation reactions with carbocations to form polymers, the generation of the tetramer required lager energy barriers than that of the dimer and trimer. The stiffness and flatness of molecules could be increased via intramolecular cyclization reactions. The polymers of anthracene might also occurred dehydrogenation reactions when the non-classical carbocations played the role of reactive intermediates. The dehydrogenation reactions required large energy barriers, which might be the reason for the product having a high aliphatic hydrogen content. METHOD: The Materials Studio (MS) 2020 software was used to complete the simulation. The atomic charge distribution calculation and the structure optimization of molecules were carried out using the B3LYP functional and DNP basis. The DFT-D (TS) dispersion corrections were added to calculate the dispersion interaction between aromatic molecules. The complete LST/QST method was used to search the transition states and calculate the reaction energy barrier.

7.
Adv Mater ; 36(14): e2309298, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38146682

RESUMO

Solid-state sodium (Na) batteries (SSNBs) hold great promise but suffer from several major issues, such as high interfacial resistance at the solid electrolyte/electrode interface and Na metal dendrite growth. To address these issues, a piezoelectric interlayer design for an Na3Zr2Si2PO12 (NZSP) solid electrolyte is proposed herein. Two typical piezoelectric films, AlN and ZnO, coated onto NZSP function as interlayers designed to generate a local stress-induced field for alleviating interfacial charge aggregation coupling stress concentration and promoting uniform Na plating. The results reveal that the interlayer (ZnO) with matched modulus, high Na-adhesion, and sufficient piezoelectricity can provide a favorable interphase. Low interfacial resistances of 91 and 239 Ω cm2 are achieved for the ZnO layer at 30 and 0 °C, respectively, which are notably lower than those for bare NZSP. Moreover, steady Na plating/stripping cycles are rendered over 850 and 4900 h at 0 and 30 °C, respectively. The superior anodic performance is further manifested in an Na2MnFe(CN)6-based full cell which delivers discharge capacities of 125 mA h g-1 over 1600 cycles at 30 °C and 90 mA h g-1 over 500 cycles at 0 °C. A new interlayer-design insight is clearly demonstrated for SSNBs breaking low-temperature limits.

8.
Nano Lett ; 23(24): 11669-11677, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38060996

RESUMO

Supramolecular aggregation has provided the archetype concept to understand the variants in an emerging systems property. Herein, we have achieved the supramolecular assembly of carbon nanodots (CDs) for the first time and employ supramolecular aggregation to understand their alteration in photophysical properties. In detail, we have employed the CDs as a block to construct the supramolecular assembly of aggregates in the CDs' antisolvent of ethanol. The CD-based aggregates exhibit complex and organized morphologies with another long-wavelength excitation-dependent emission band. The experimental results and density functional theoretical calculations reveal that the supramolecular assembly of CDs can decrease the energy gap between the ground and excited states, contributing to the new long-wavelength excitation-dependent emission. The supramolecular aggregation can be employed as one universal strategy to manipulate and understand the luminescence of CDs. These findings cast new light to build the emerging systems and understand the light emission of CDs through supramolecular chemistry.

9.
Biomed Pharmacother ; 169: 115877, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37951025

RESUMO

DNA repair is a vital mechanism in cells that protects against DNA damage caused by internal and external factors. It involves a network of signaling pathways that monitor and transmit damage signals, activating various cellular activities to repair DNA damage and maintain genomic integrity. Dysfunctions in this repair pathway are strongly associated with the development and progression of cancer. However, they also present an opportunity for targeted therapy in breast cancer. Extensive research has focused on developing inhibitors that play a crucial role in the signaling pathway of DNA repair, particularly due to the remarkable success of PARP1 inhibitors (PARPis) in treating breast cancer patients with BRCA1/2 mutations. In this review, we summarize the current research progress and clinical implementation of BRCA and BRCAness in targeted treatments for the DNA repair pathway. Additionally, we present advancements in diverse inhibitors of DNA repair, both as individual and combined approaches, for treating breast cancer. We also discuss the clinical application of DNA repair-targeted therapy for breast cancer, including the rationale, indications, and summarized clinical data for patients with different breast cancer subtypes. We assess their influence on cancer progression, survival rates, and major adverse reactions. Last, we anticipate forthcoming advancements in targeted therapy for cancer treatment and emphasize prospective areas of development.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/metabolismo , Reparo do DNA , Dano ao DNA
10.
Biomed Pharmacother ; 168: 115669, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37820568

RESUMO

Diabetic cardiomyopathy is a chronic cardiovascular complication caused by diabetes that is characterized by changes in myocardial structure and function, ultimately leading to heart failure and even death. Mitochondria serve as the provider of energy to cardiomyocytes, and mitochondrial dysfunction plays a central role in the development of diabetic cardiomyopathy. In response to a series of pathological changes caused by mitochondrial dysfunction, the mitochondrial quality control system is activated. The mitochondrial quality control system (including mitochondrial biogenesis, fusion and fission, and mitophagy) is core to maintaining the normal structure of mitochondria and performing their normal physiological functions. However, mitochondrial quality control is abnormal in diabetic cardiomyopathy, resulting in insufficient mitochondrial fusion and excessive fission within the cardiomyocyte, and fragmented mitochondria are not phagocytosed in a timely manner, accumulating within the cardiomyocyte resulting in cardiomyocyte injury. Currently, there is no specific therapy or prevention for diabetic cardiomyopathy, and glycemic control remains the mainstay. In this review, we first elucidate the pathogenesis of diabetic cardiomyopathy and explore the link between pathological mitochondrial quality control and the development of diabetic cardiomyopathy. Then, we summarize how clinically used hypoglycemic agents (including sodium-glucose cotransport protein 2 inhibitions, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, thiazolidinediones, metformin, and α-glucosidase inhibitors) exert cardioprotective effects to treat and prevent diabetic cardiomyopathy by targeting the mitochondrial quality control system. In addition, the mechanisms of complementary alternative therapies, such as active ingredients of traditional Chinese medicine, exercise, and lifestyle, targeting mitochondrial quality control for the treatment of diabetic cardiomyopathy are also added, which lays the foundation for the excavation of new diabetic cardioprotective drugs.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Humanos , Cardiomiopatias Diabéticas/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/metabolismo , Mitocôndrias , Miocárdio/patologia , Miócitos Cardíacos , Diabetes Mellitus/tratamento farmacológico
11.
Biomacromolecules ; 24(9): 4138-4147, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37640397

RESUMO

Small-diameter artificial blood vessels are increasingly being used in clinical practice. However, these vessels are prone to thrombus, and it is necessary to improve blood compatibility. Surface coating is one of the commonly used methods in this regard. Inspired by the biomimicry of mussels, the use of deposition technology to obtain coating coverage on the surface of fibers has significantly piqued the interest of researchers recently. In this study, tubular scaffolds consisting of a composite of poly(caprolactone), cellulose acetate, and tannic acid (TA) were electrospun, and then the scaffolds were treated with different Fe(III) solutions (iron(III) chloride hexahydrate (FeCl3'6H2O)) to obtain four tubular scaffolds: F0, F5, F15, and F45. According to scanning electron microscopy (SEM) and field emission-SEM results, TA/Fe(III) complex is coated on the fiber of the scaffold after post-treatment; the fiber surface morphology changes with different Fe(III) concentrations. This provides designability to the performance of tubular scaffolds. The tensile strength of the F5 tubular scaffold (3.33 MPa) is higher than that of F45 (3.14 MPa), while the strain (83.9%) of the F45 tubular stent was 2.26 times that of the F5 (37.2%). In addition, cytotoxicity and antithrombotic performance were evaluated. The test results show that surface TA/Fe(III) coating treatment can affect the cytotoxicity and anticoagulation performance of the scaffold surface. The biomimetic TA/Fe(III) coating of mussels used in this study improves the performance of artificial blood vessels.


Assuntos
Substitutos Sanguíneos , Compostos Férricos , Poli A
12.
Medicine (Baltimore) ; 102(32): e34550, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37565905

RESUMO

The aim of this study was to validate the diagnostic efficacy of acoustic attenuation imaging (ATI) and ultrasonic shear wave elastography (SWE) in classifying nonalcoholic fatty liver disease (NAFLD). A total of 100 patients with NAFLD were recruited from our hospital between January 2021 and December 2022. Patient demographics and clinical data were collected, and 2-dimensional ultrasound was used to screen patients based on liver echo characteristics. Patients without liver space-occupying lesions underwent routine ultrasound examinations. Imaging or serology was used to confirm the presence of fatty liver in patients or healthy individuals. Patients with alcoholic liver disease (alcohol equivalent content < 20 g/day for women, <30 g/day for men), as well as those with lenticular degeneration, total parenteral nutrition, autoimmune liver disease, drug-induced hepatitis, and viral hepatitis, were excluded from the study. Out of the 100 included patients, 24 had normal liver, 21 had mild fatty liver, 30 had moderate fatty liver, and 25 had severe fatty liver. There were age differences between the normal group and patients with mild fatty liver, and the average body mass index (BMI) varied across the 4 groups. As the severity of the disease increased, the average BMI also increased (P < .05). The ATI scores and SWE scores differed significantly among the different groups (P < .05), with both scores showing an upward trend as the fatty liver condition worsened. Correlation analysis revealed positive correlations between ATI and SWE scores and the degree of fatty liver (P < .05), positive correlations with BMI (P < .05), and negative correlations with high-density lipoprotein cholesterol expression (P < .05). The area under the curve (AUC) for the ATI score in diagnosing different degrees of fatty liver was > 0.750, and the AUC for the SWE score was also > 0.750. The AUC for SWE score in diagnosing different degrees of fatty liver ranged from 1.01 to 4.57, while the combined AUC for ATI and SWE scores was > 0.850, with respective cutoff values of 3.62, 5.72, and 7.57 based on the maximum approximate entry index. The combination of ATI and SWE has a significant impact on the grading diagnosis of NAFLD, and its application can be extended to clinical practice.


Assuntos
Técnicas de Imagem por Elasticidade , Hepatopatia Gordurosa não Alcoólica , Masculino , Humanos , Feminino , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/patologia , Cirrose Hepática/patologia , Técnicas de Imagem por Elasticidade/métodos , Ultrassom , Fígado/diagnóstico por imagem , Fígado/patologia
13.
Front Endocrinol (Lausanne) ; 14: 1192602, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396164

RESUMO

Cognitive dysfunction is increasingly recognized as a complication and comorbidity of diabetes, supported by evidence of abnormal brain structure and function. Although few mechanistic metabolic studies have shown clear pathophysiological links between diabetes and cognitive dysfunction, there are several plausible ways in which this connection may occur. Since, brain functions require a constant supply of glucose as an energy source, the brain may be more susceptible to abnormalities in glucose metabolism. Glucose metabolic abnormalities under diabetic conditions may play an important role in cognitive dysfunction by affecting glucose transport and reducing glucose metabolism. These changes, along with oxidative stress, inflammation, mitochondrial dysfunction, and other factors, can affect synaptic transmission, neural plasticity, and ultimately lead to impaired neuronal and cognitive function. Insulin signal triggers intracellular signal transduction that regulates glucose transport and metabolism. Insulin resistance, one hallmark of diabetes, has also been linked with impaired cerebral glucose metabolism in the brain. In this review, we conclude that glucose metabolic abnormalities play a critical role in the pathophysiological alterations underlying diabetic cognitive dysfunction (DCD), which is associated with multiple pathogenic factors such as oxidative stress, mitochondrial dysfunction, inflammation, and others. Brain insulin resistance is highly emphasized and characterized as an important pathogenic mechanism in the DCD.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus , Resistência à Insulina , Humanos , Diabetes Mellitus/metabolismo , Glucose/metabolismo , Encéfalo/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Inflamação/complicações , Inflamação/metabolismo
14.
Adv Sci (Weinh) ; 10(27): e2302774, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37485585

RESUMO

Achieving satisfactory performance for a solid-state Na-metal battery (SSNMB) with an inorganic solid electrolyte (SE), especially under freezing temperatures, poses a challenge for stabilizing a Na-metal anode. Herein, this challenge is addressed by utilizing a Natrium super ionic conductor (NASICON) NASICON-type solid electrolyte, enabling the operation of a rechargeable SSNMB over a wide temperature range from -20 to 45 °C. The interfacial resistance at the Na metal/SE interface is only 0.4 Ω cm2 at 45 °C and remains below 110 Ω cm2 even at -20 °C. Remarkably, long-term Na-metal plating/stripping cycles lasting over 2000 h at -20 °C are achieved with minimal polarization voltages at 0.1 mA cm-2 . Further analysis reveals the formation of a uniform Na3- x Cax PO4 interphase layer at the interface, which significantly contributes to the exceptional interfacial performance observed. By employing a Na3 V1.5 Al0.5 (PO4 )3 cathode, the full battery system demonstrates excellent adaptability to low temperatures, exhibiting a capacity of 80 mA h g-1 at -20 °C over 50 cycles and retaining a capacity of 108 mAh g-1 (88.5% of the capacity at 45 °C) at 0 °C over 275 cycles. This research significantly reduces the temperature threshold for SSNMB operation and paves the way toward solid-state batteries suitable for all-season applications.

15.
Front Cell Infect Microbiol ; 13: 1119992, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37265504

RESUMO

Colorectal cancer (CRC) is a major health burden, accounting for approximately 10% of all new cancer cases worldwide. Accumulating evidence suggests that the crosstalk between the host mucins and gut microbiota is associated with the occurrence and development of CRC. Mucins secreted by goblet cells not only protect the intestinal epithelium from microorganisms and invading pathogens but also provide a habitat for commensal bacteria. Conversely, gut dysbiosis results in the dysfunction of mucins, allowing other commensals and their metabolites to pass through the intestinal epithelium, potentially triggering host responses and the subsequent progression of CRC. In this review, we summarize how gut microbiota and bacterial metabolites regulate the function and expression of mucin in CRC and novel treatment strategies for CRC.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiologia , Neoplasias Colorretais/microbiologia , Mucinas , Bactérias , Mucosa Intestinal/microbiologia
16.
Dalton Trans ; 52(28): 9655-9663, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37381747

RESUMO

Natural gas plays an important role in daily life and the petrochemical industry, but there are often large amounts of impurities which prevent the full use of methane in natural gas. Developing excellent adsorbents to purify CH4 from multi-component mixtures is crucial, but also faces great challenges. Here, by utilizing a ligand conformation preorganization strategy, we employ a flexible nonplanar hexacarboxylate ligand with C2 symmetry to successfully construct a robust microporous metal-organic framework {[Cu3(bmipia)(H2O)3]·(DMF)(CH3CN)2}n (GNU-1, bmipia = 5-[N,N-bis(5-methylisophthalic acid)amion] isophthalate) with an unprecedented topology. More importantly, the obtained GNU-1 not only exhibits good stability in acid-base and water environments, but also shows potential utility as an adsorbent for efficient separation and purification of natural gas under ambient conditions. The adsorption isotherms of GNU-1a (activated GNU-1) exhibit strong binding affinities for C2H6 and C3H8, a remarkable uptakes of C3H8 (6.64 mmol g-1) and C2H6 (4.6 mmol g-1) and an excellent selectivity of 330.1 and 17.5 for C3H8/CH4 and C2H6/CH4 mixtures, respectively, at 298 K and 1 bar. The breakthrough experiments demonstrate that the ternary CH4/C2H6/C3H8 mixtures are completely separated using a fixed-bed separator packed with GNU-1a at ambient temperature and also show great potential for recovering the C2H6 and C3H8 contents from natural gas. Finally, Grand Canonical Monte Carlo simulations are adopted to ascertain potential gas adsorption mechanisms. This work proves the feasibility of optimizing the structure and pore size of MOF materials by regulating the conformation of ligands for application in the field of light hydrocarbon adsorption/separation.

17.
Light Sci Appl ; 12(1): 104, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142602

RESUMO

Advanced antibacterial technologies are needed to counter the rapid emergence of drug-resistant bacteria. Image-guided therapy is one of the most promising strategies for efficiently and accurately curing bacterial infections. Herein, a chemiluminescence (CL)-dynamic/guided antibacteria (CDGA) with multiple reactive oxygen species (ROS) generation capacity and chemiexcited near-infrared emission has been designed for the precise theranostics of bacterial infection by employing near-infrared emissive carbon nanodots (CDs) and peroxalate as CL fuels. Mechanistically, hydrogen peroxide generated in the bacterial microenvironment can trigger the chemically initiated electron exchange between CDs and energy-riched intermediate originated from the oxidized peroxalate, enabling bacterial induced inflammation imaging. Meanwhile, type I/II photochemical ROS production and type III ultrafast charge transfer from CDs under the self-illumination can inhibit the bacteria proliferation efficiently. The potential clinical utility of CDGA is further demonstrated in bacteria infected mice trauma model. The self-illuminating CDGA exhibits an excellent in vivo imaging quality in early detecting wound infections and internal inflammation caused by bacteria, and further are proven as efficient broad-spectrum antibacterial nanomedicines without drug-resistance, whose sterilizing rate is up to 99.99%.

18.
Front Microbiol ; 14: 1156027, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250056

RESUMO

Simplicillium species are widely distributed with a broad spectrum of hosts and substrates. Generally, these species are entomopathogenic or mycoparasitic. Notably, some isolates of Simplicillium lanosoniveum and Simplicillium obclavatum were obtained from human tissues. In this study, two fungi were isolated from the annular itchy patch of infected skin of a 46-year-old man with diabetes mellitus. Based on a combination of morphological characteristics and phylogenetic analysis, a novel species, Simplicillium sinense, was introduced herein. It morphologically differs from the remaining Simplicillium in the size of phialides and conidia. Additionally, it grows slowly on YPD at 37°C. Antimicrobial susceptibility testing presented that this fungus is resistant to most azole antifungals. Therefore, the diagnosis of tinea faciei was made, and after 2 weeks of being treated with oral terbinafine (250 mg, once a day) and topical terbinafine cream for 1 month, the rash was mainly resolved and no recurrence happened after 6 months of follow-up. Herein, Simplicillium sinense was introduced as a new fungal taxon. Meanwhile, a case of superficial infection caused by S. sinense was reported. So far, it is the third Simplicillium species obtained from human tissue. Meanwhile, terbinafine is recommended as the first-line antifungal treatment against Simplicillium infection.

19.
Inflammation ; 46(4): 1381-1395, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37222907

RESUMO

The pathogeneses of psoriasis and metabolic syndrome are closely related; however, the underlying biological mechanisms are yet to be clarified. A psoriasis training set was downloaded from the Gene Expression Omnibus database and analyzed to identify the differentially expressed genes (|logFC|> 1 and adjust P < 0.05). Differentially expressed genes for metabolic syndrome were obtained from the GeneCards, Online Mendelian Inheritance in Man, and DisGeNET databases, and crosstalk genes were obtained for multiple enrichment analysis after identifying the disease intersection. Characteristic crosstalk genes were screened using the least absolute shrinkage and selection operator regression model and random forest tree model, and the genes with area under the receiver operating characteristic curve > 0.7 were selected for validation by the two validation sets. Differential analyses of immune cell infiltration were performed on psoriasis lesion and control samples using the CIBERSORT and ImmuCellAI methods, and correlation analyses were performed between the screened signature crosstalk genes and immune cell infiltration. Significant crosstalk genes were analyzed based on the psoriasis area and severity index and on the responses to biological agents. We found five signature genes (NLRX1, KYNU, ABCC1, BTC, and SERPINB4) were screened based on two machine learning algorithms, and NLRX1 was validated. The infiltration of multiple immune cells in psoriatic lesions and non-lesions was associated with NLRX1 expression. NLRX1 was found to be associated with psoriasis severity and response rate after the use of biologics. NLRX1 could be a significant crosstalk gene for psoriasis and metabolic syndrome.


Assuntos
Síndrome Metabólica , Humanos , Síndrome Metabólica/genética , Biologia Computacional , Bases de Dados Genéticas , Proteínas Mitocondriais
20.
Chem Sci ; 14(15): 4183-4192, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37063797

RESUMO

Herein, we investigate synthetic routes to a close mimic of natural pheomelanin. Three different oxidative polymerization routes were attempted to generate synthetic pheomelanin, each giving rise to structurally dissimilar materials. Among them, the route employing 5-cysteinyl-dihydroxyphenylalanine (5-CD) as a monomer was verified as a close analogue of extracted pheomelanin from humans and birds. The resulting biomimetic and natural pheomelanins were compared via various techniques, including solid-state Nuclear Magnetic Resonance (ssNMR) and Electron Paramagnetic Resonance (EPR). This synthetic pheomelanin closely mimics the structure of natural pheomelanin as determined by parallel characterization of pheomelanin extracted from multiple biological sources. With a good synthetic biomimetic material in hand, we describe cation-π interactions as an important driving force for pheomelanogenesis, further advancing our fundamental understanding of this important biological pigment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...